

Why drying?

The compression of humid ambient air, for example in an industrial application, produces liquid water by condensation. If the application does not allow moisture for chemical-physical reasons or danger arises due to the precipitation of the moisture, this water vapor must be removed before and the air dried before compression.

The maximum water vapor content of a compressed air volume unit is caused by the temperature of the compressed air and is almost completely independent of its pressure. The water vapor content is therefore theoretically represented by the dew point, which indicates the temperature at which the actual water vapor quantity corresponds to a relative humidity of 100 % and below which condensation begins.

Drying in this context means a reduction of the dew point below the actual operating temperature. For drying to lowest dew points, essentially only the process of adsorption, in which water is bound to a solid phase, is suitable. Adsorption is thereby defined as the attraction of a substance (the adsorbate) to the surface of a solid body (the adsorbent) via physical binding forces. Since the adsorption capacity of adsorbents decreases with increasing temperature and decreasing pressure, moisture can be desorbed again by heat supply or pressure

The adsorbents used in such a drying process are high-tech desiccant and have an inner surface area of up to 1000 m²/g, due to their pore structure of macro-, meso-and micropores, where condensed water vapor can accumulate. For the drying of compressed air, silica gels, aluminum oxides (activated alumina) and zeolitic molecular sieves are most commonly used. These desiccants reach dynamic adsorption capacities above 20 % by weight and dew points down to -100 °C.

BASF Solutions for Compressed Air

Sorbead®/KC-Trockenperlen®

BASF Sorbead® R (also known as KC-Trockenperlen® N) are high-performance adsorbents for dehydration of air, technical gases and liquids. The patented BASF Sorbead® line of highly efficient adsorbents are alumino-silicate gels in the form of hard, spherical beads, with a very high resistance to crushing and a low attrition rate. Sorbead® adsorbents have a longer life than most other adsorbents and can reduce operating costs in most applications. Sorbead® R is an adsorbents with a wide range of applications. Its high level of efficiency (above-average drying capacity at low required desorption energy) and reliability (low level of product loss, high mechanical strength) is derived from a combination of unique properties. Sorbead® R is mainly used for the continuous drying of compressed air, technical gases (e.g. N₂, O₂, CO₂) and liquefied gases. A guard layer of Sorbead® WS protects the main bed against liquid water.

BASF Sorbead® WS (also known as KC-Trockenperlen® WS) water-resistant silica gel adsorbents have high capacity and protect other adsorbents and catalysts from water and moisture in a broad range of applications. Sorbead® WS is the only 100 % water-resistant adsorbent with a high adsorption capacity. It is most frequently used as a protective layer in combination with Sorbead® R or other adsorbents such as molecular sieves, activated alumina, activated carbons and catalysts in order to increase the reliability of the system. The high capacity of Sorbead® WS enables it to be used on a standalone basis as well. With its high resistance against hydrothermal aging and low regeneration temperature, Sorbead® WS is ideal for applications with high moisture regeneration gas (Heat-of-Compression).

Activated Alumina

BASF F-200 is a smooth sphere of activated alumina produced by BASF's unique manufacturing process. F-200 is an excellent adsorbent for drying a wide variety of liquids and gases. Although all molecules are adsorbed to some extent on F-200 activated alumina, those molecules having the highest polarity are preferentially adsorbed. Stream conditions such as pressure, concentration and molecular weight of the molecules, temperature and site competing molecules affect the efficiency of adsorption.

BASF-Molecular Sieves

BASF 4A Molecular Sieve is a synthetic crystalline aluminosilicate with a regular micropore structure and a widely used adsorbent for many different applications. BASF 4A exhibits high water adsorption capacity at low partial pressures and at temperatures up to 100 °C. BASF 4A Molecular Sieve is commonly used for drying of organic liquids (solvents, oils, gasoline and other saturated hydrocarbons), air, liquid gases (propane, butane), as well as noble and other gases (H₂, N₂, He, Ar, etc.).

Table 1

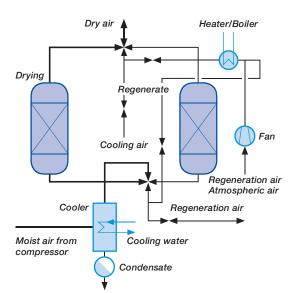
Typical Properties		Sorbead [®] (KC-Trockenperlen [®])		Activated Alumina	BASF Molecular Sieve
		R (N) 2050 WS 2050	F 200	4 A	
Chemical composition Specific surface area	m²/g	Al ₂ O ₃ 3 %, SiO ₂ 97 %		Al_2O_3	Na ₁₂ [(AlO ₂)12 (SiO ₂) ₁₂]·27H ₂ O
		750	650	340	800
Pore volume	ml/g	0.42	0.44	0.5	0.30
Equilibrium capacity for water vapor at 25 °C and relative humidity 80 %	% by weight	42.0	42.0	30.0	21
Packed bulk desity	kg/l	0.8	0.7	0.8	0.7
Grain size 1	mm	2–5	2–5	4.7 (3/16")	2.5–5
Water (liquid) resistant		no	yes	(yes)	no
Typical desorption temperature	°C	120–150	120–150	170–200	200–250
Pressure dew point down to	°C	-60	-60	-40	-100

¹ typical for compressed air drying

Applications: Compressed air adsorption drying

Today adsorption dryers are part of every modern compressed air and energy supply. In addition to the correct regeneration process, the adsorbent is the actual basic process component of each adsorption dryer and is responsible not only for the physical process of adsorption but also for the efficiency of the system.

Economic systems


Where high efficiency is required specifically due to high energy costs, an adsorption dryer filled with Sorbead® can achieve or even exceed the required performance with a long lifetime.

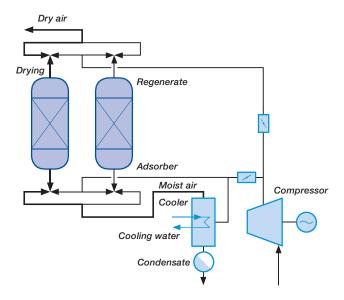
Compressed-air dryer manufacturers use Sorbead® for first fills and specify Sorbead® as the best option if a particularly low-energy operation is required. Energy efficiency and high reliability make Sorbead® the perfect choice in energy-efficient compressed air dryers compared to other adsorbents like Activated Alumina and Molecular Sieves.

External heat-regenerated (purgeless)

Low-energy external heat-regenerated adsorption dryers (figure 1) are desorbed and cooled with drawn-in ambient air (blower air). An external electric heater, steam or another medium can be used for heating. Modern purgeless systems (zero-purge) do not require compressed air consumption (purge air), depending on the pressure dew point with low desorption temperatures (120 to 150 °C) and are now delivered in different versions.

Figure 1 Compressed-air dryer with purgeless regeneration

Pressure dew point: -25 to -60 °C Adsorbent: Sorbead® R/WS (KC-Trockenperlen® N/WS)


Heat-of-compression (HOC)

The Heat-of-Compression process (figure 2) is a heatregenerated adsorption dryer that uses the hot gas flow from an oil-free compressor for full or split stream desorption. The closed system is regenerated under pressure and the hot compressed air coming from the compressor is used for the desorption. These systems are among the most energy-efficient compressed air dryers and show how efficient and efficiently dried compressed air can be produced.

Pressure dew point: -15 to -40 °C Adsorbent: Sorbead® WS (KC-Trockenperlen® WS)

Sorbead® WS meets the special requirements of this procedure to a continuous regenerability at high temperature and high humidity of the desorption air (dew point +60 °C).

Figure 2 Compressed air dryer with Heat-of-Compression (HOC)

Standard systems

Cold regenerated (heatless)

Cold-regenerated dryers (so-called heatless driers) function without heat but with a lot of compressed air. These pressure swing adsorption dryers require a partial flow of previously-dried air for regeneration. The change-over takes place after only a few minutes with low water adsorption of less than 1 % by weight of the drying agent. Due to the high consumption of 12 to 25 % dried compressed air depending on the operating pressure, relatively high energy costs result during operation.

Pressure dew point: -25 to -40 °C, -70 °C ¹ Adsorbent: Activated Alumina F 200, Molecular Sieve 4A

External Heat regenerated (standard)

Standard adsorption dryers (externally heat-regenerated) are desorbed with externally heated fan air like the low-energy variants. These are used if the demands on the efficiency are not too high. In contrast to the modern purgeless systems, a partial flow of compressed air (purge air) is normally required for cooling. The standard of these systems usually includes drying agents which require a significantly higher desorption temperature (170° to 200 °C.) and require a largely dry regeneration air.

Pressure dew point: -25 to -40 °C Adsorbent: Activated Alumina F 200

Special systems

In the field of compressed-air adsorption dryers, there are also special applications which require adaptation of the plant or a special adsorbent.

Molecular sieves are used when particularly deep pressure dew points (up to -100 °C) are required, where the compressed air to be dried has a low relative humidity or is already pre-dried. Likewise, molecular sieves are suitable for the selective separation of gas mixtures owing to their uniform pore structure. Molecular sieves can be regenerated but require high temperatures of above 200 °C in order to reach the residual moisture required for very low dew points.

Table 2 BASF adsorbents Selection table for compressed air dryers

Compressed air adsorption dryer Regeneration process		PDP ¹ (down to)	Sorbead [®] (KC-Trockenperlen [®])		Activated Alumina	BASF Molecular Sieve
			R (N)	WS	F 200	4 A
Cold regenerated	Heatless	-25 °C			•	
		-40 °C			•	
		-70 °C				•
External Heat regenerated	Standard systems	-25 °C	2	•	•	
		-40 °C	_2	•	•	
		-70 °C				•
	Economic systems	-25 °C	_2	•		
		-40 °C	_2	•		
		-60 °C	_2	•		
Compressor- warming	Heat of compression	-15 to 40 °C		•		

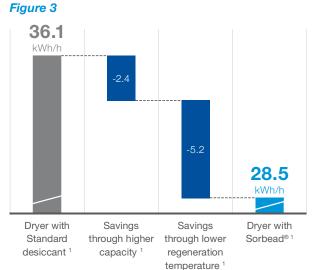
¹ As a function of the desorption temperature, PDP - Pressure dew point

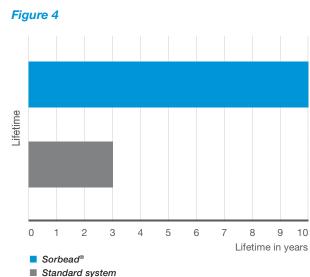
¹ Molecular sieve 4 A

²80 % Sorbead® (KC-Trockenperlen® N) and 20 % Sorbead® WS (KC-Trockenperlen® WS) as protection layer

Sorbead® advantage: Energy savings

The efficiency of a compressed air unit is strongly influenced by the adsorption capacity, regenerability and the lifetime of the adsorbent. The lower the desorption temperature and the longer the lifetime of the adsorbent, the higher is the efficiency of a plant.


Sorbead® - High efficiency


Because of their high adsorption capacity and the energetically favorable regeneration conditions to achieve low pressure dew points. Sorbead® (KC-Trockenperlen®) is the first choice for low-energy heat-regenerated adsorption dryers. Sorbead® is therefore the most economical and environmental friendly adsorbent. As a particularly economical and environmentally friendly adsorbent.

As shown in *figure 3* dryers filled with Sorbead® lead to a significant reduction of the dryer's energy cost due to Sorbead's® high adsorption capacity and energetically favorable regeneration conditions compared to standard desiccants.

As a result Sorbead® is the first choice for heat regenerated adsorption dryers

Sorbead® is used in almost all industrial areas with different pressure dew points and regeneration methods, with sometimes above-average lifetime of up to 10 years (see figure 4).

Average energy consumption and energy savings at a compressed air unit, externally heat regenerated 66 m³/min, 7 bar, 35 °C, -40 °C PDP

Operators of compressed air units appreciate the high efficiency and the long lifetime of Sorbead® because of the combination of the following unique properties:

- High adsorption capacity due to large specific surface area and pore volume
- Low desorption temperatures to achieve low pressure dew points and good desorption in moist regenerating air
- Abrasion resistance and low pressure drop
- Good mechanical and thermal stability and high chemical resistance
- Long lifetime and low maintenance requirements

Sorbead® (KC-Trockenperlen®) is a registered trademark of BASF and is intended for use as an adsorbent. Sorbead® is Made in Germany and is manufactured at the BASF plant in Nienburg/Weser.

Original Sorbead® meets the highest quality requirements and can be clearly identified by their CAS-Register number. In addition, it meets the requirements of the European Chemicals Regulation REACH, which is intended to ensure a high level of protection for human being and the environment.

For new adsorption units BASF recommends to use one of the economical system based on Sorbead®. Compressed air operators can improve the efficiency of their adsorption dryer with the support of BASF's technical service and by the use of Sorbead®.

BASF Iran (PJS) Co.

North Sohrevardi Ave. Kangavar Alley, No.5 Post Code 15579-57111 P.O.Box 11155-4619

Tel: +98 21 88768237 Fax: +98 21 88762894

Asia Pacific

BASF (China) Company Limited 300 Jiang Xin Sha Road Pudong, Shanghai 200137 P.R. China

Tel: +86-21-2039 2549 Fax: +86-21-2039 4800-2549 Email: catalysts-asia@basf.com

Europe, Middle East, Africa

BASF De Meern BV Catalysts The Netherlands

Tel: +31-30-666 9437 Fax: +31-30-666 1531

Email: catalysts-europe@basf.com

sorbead@basf.com trockenperlen@basf.com

About Us

BASF's Catalysts division is the world's leading supplier of environmental and process catalysts. The group offers exceptional expertise in the development of technologies that protect the air we breathe, produce the fuels that power our world and ensure efficient production of a wide variety of chemicals, plastics and other products, including advanced battery materials. By leveraging our industry-leading R&D platforms, passion for innovation and deep knowledge of precious and base metals, BASF's Catalysts division develops unique, proprietary solutions that drive customer success.

BASF – We create chemistry

Although all statements and information in this publication are believed to be accurate and reliable, they are presented gratis and for guidance only, and risks and liability for results obtained by use of the products or application of the suggestions described are assumed by the user. NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH. Statements or suggestions concerning possible use of the products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that toxicity data and safety measures are indicated or that other measures may not be required. © 2017 BASF

Sorbead and KC-Trockenperlen are trademarks of BASF.